Resveratrol as molecular competitor of PIB on the binding sites of the amyloid plaque

Patricia Oliver1, Tania Parado1, Elena Vasiliskis1, Henry Engler1
1Uruguayan Center of Molecular Imaging (CUDIM), Montevideo, Uruguay

Background

Resveratrol (3,5,4-trihydroxy-trans-stilbene), a polyphenolic compound found in juice and wine from dark-skinned grape crops, has been shown to have a neuroprotective role in vitro and in vivo studies. Moreover, it has been found that resveratrol protects, concentration-dependently, against amyloid-β induced toxicity in cultured neurons, which plays a critical role in the neuropathology of Alzheimer’s disease (AD).

PET imaging of fibrillary amyloid-β depositions in human brain, has enabled the early detection of amyloidosis. [11C]-Pittsburgh compound B (PIB) is the most widely used amyloid-β tracer.

Based on the structural similarity between resveratrol and PIB (Figure 1), we studied if the binding of PIB to human brain amyloid could be influenced by resveratrol.

![Figure 1](image)

Figure 1. (A) N-Methyl-[11C] 2-4'-methylaminophenyl)-6-hydroxybenzothiazole ([11C] PIB). (B) 3,5,4-trihydroxy-trans-stilbene (Resveratrol).

Structural elements shared between displayed structures are highlighted.

Objective

To determine the in vitro affinity of resveratrol to the [11C]PIB amyloid binding sites using quantitative autoradiography studies in postmortem human brain sections of patients with AD.

Materials & Methods

In vitro autoradiography studies were performed on frozen unfixed serial brain sections (20 μm) from postmortem middle frontal cortex of patients with familial AD (courtesy of the Brain Bank of FLENH, Argentina). The presence of amyloid was confirmed histopathologically.

Autoradiographic displacement studies with [11C]PIB as tracer and resveratrol as competitor were done. To assess the effect of resveratrol to the binding of [11C]PIB, the tissues were treated with resveratrol for 5 min at increasing concentrations: 0.1, 1, 10, 100, 1000, 10,000 nM. Then, they were incubated with [11C]PIB (0.3 MBq/mL) for 40 minutes.

Alternatively, displacement studies of [11C]PIB by “cold” PIB (concentrations studied: 0.01, 0.1, 1, 10, 100, 1000, 10,000 nM) were evaluated (Figure 2). For each replicated experiment (N=3), at least 3 tissue slices were sampled.

Slides were exposed to HS screen. The images were acquired on a Phosphor Imager and analyzed using a computer-based image analysis system (ImageQuant TL).

Results

We observed that resveratrol blocked the binding of [11C]PIB to amyloid in AD human brain cortex. The inhibition was dose-dependent. An inhibition of 97% was observed with a concentration of 100 nM of resveratrol and a total blockade with 1000 nM.

Displacement or inhibition studies revealed an affinity (IC50) value of (31±10) nM for resveratrol, and (3.3±1.3) nM for PIB (Figure 3).

Conclusions

Resveratrol had a competitor effect concerning the [11C]PIB binding sites. A total blocking was reached at the highest dose. However, PIB was found to have 10-fold more affinity than resveratrol to the amyloid binding sites.

Further studies of the effects of resveratrol in amyloid depositions in vivo AD are necessary.

References