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ARTICLE INFO ABSTRACT
Keywords: Alzheimer’s disease (AD) is the most common form of dementia, affecting approximately 47 M people world-
Metabolomics wide. Histological features and genetic risk factors, among other evidence, supported the amyloid hypothesis of

Alzheimer’s disease the disease. This neuronocentric paradigm is currently undergoing a shift, considering evidence of the role of

other cell types, such as microglia and astrocytes, in disease progression. Previously, we described a particular
astrocyte subtype obtained from the 3xTg-AD murine model that displays neurotoxic properties in vitro. We
continue here our exploratory analysis through the lens of metabolomics to identify potentially altered metab-
olites and biological pathways.

Cell extracts from neurotoxic and control astrocytes were compared using high-resolution mass spectrometry-
based metabolomics. Around 12 % of metabolic features demonstrated significant differences between neuro-
toxic and control astrocytes, including alterations in the key metabolite glutamate. Consistent with our previous
transcriptomic study, the present results illustrate many homeostatic and regulatory functions of metabolites,
suggesting that neurotoxic 3xTg-AD astrocytes exhibit alterations in the Krebs cycle as well as the prostaglandin
pathway.

This is the first metabolomic study performed in 3xTg-AD neurotoxic astrocytes. These results provide insight

into metabolic alterations potentially associated with neurotoxicity and pathology progression in the 3xTg-AD
mouse model and strengthen the therapeutic potential of astrocytes in AD.
Biological significance: Our study is the first high-resolution metabolomic characterization of the novel neurotoxic
3xTg-AD astrocytes. We propose key metabolites and pathway alterations, as well as possible associations with
gene expression alterations in the model. Our results are in line with recent hypotheses beyond the amyloid
cascade, considering the involvement of several stress response cascades during the development of Alzheimer’s
disease. This work could inspire other researchers to initiate similar studies in related models. Furthermore, this
work illustrates a powerful workflow for metabolite annotation and selection that can be implemented in other
studies.

Dementia
3xTg-AD mouse
Astrocytes

1. Introduction characterized by memory loss, spatial and temporal disorientation, and
progressive cognitive impairment [1,2]. Histologically, it is character-
Alzheimer’s disease (AD) is a neurodegenerative pathology ized by the presence of amyloid plaques and neurofibrillary tangles as a
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result of extracellular deposition of amyloid beta protein and intra-
neuronal aggregation of hyperphosphorylated tau protein, respectively
[1,2]. Although most cases are idiopathic, several genetic risk factors
have been discovered, mainly related to the synthesis and processing of
the amyloid protein [1,2]. This evidence is in line with the amyloid
hypothesis, traditionally evaluated from a neuronocentric point of view.
In this sense, an imbalance between the production and elimination of
beta amyloid would trigger inflammatory and oxidative stress processes
that would ultimately lead to the loss of synaptic integrity, neuronal
connectivity and, ultimately, to progressive regional neurodegeneration
[3].

Although one of the main focuses of research has been the role of tau
and beta amyloid protein aggregates in neuronal death, it is well known
that the pathology of AD is multifactorial and involves an interaction of
many risk factors and processes such as vascular pathology, inflamma-
tion and metabolic alterations [4-6]. This has led to the need to further
study the role of other important cellular players such as glia and their
associated processes. In particular, astrocytes are glial cells that have
key functions in brain homeostasis, such as synapse regulation, trophic
supply, and waste removal, among others [7]. Astrocytes respond to
tissue damage by assuming different phenotypes widely known as
astrocyte reactivity or astrogliosis [8]. In this sense, multiple studies
point to early imbalances in astrocyte function and morphological
changes associated with the progression of AD, as well as their contri-
bution to both neuroinflammation and neuroprotection in various dis-
eases and brain models [9-13].

Transgenic mouse models are invaluable tools to improve our un-
derstanding of diseases. In the present work we use the 3xTg-AD mouse
model of AD, which replicates many features of the disease, including
plaque and tangle pathology, age-related cognitive deficits, astrocyte
reactivity, and brain atrophy. In previous studies, we isolated and
cultured astrocytes from the cortex and hippocampus of 10-month-old
symptomatic 3xTg-AD mice that exhibited a high proliferation rate,
differential expression of astrocyte markers, and the ability to mediate
neuronal degeneration [14]. The results added evidence to the hy-
pothesis that microenvironment-induced changes in astrocyte function
during disease progression may promote or accelerate
neurodegeneration.

In the present work we expand the description of these neurotoxic
astrocytes through the metabolomic lens. Metabolomics is an emerging
discipline interested in the study of the global collection of small mol-
ecules in the body or cells that reflects the combined effect of genetic
factors and environmental exposures on phenotype [15]. In particular,
untargeted approaches do so without a priori knowledge of the metab-
olites involved. A currently untargeted high-resolution metabolomics
strategy typically involves the use of liquid chromatography coupled
with high-resolution mass spectrometry to accurately separate and
detect the mass and abundance of distinct metabolic features. We used
this approach to identify metabolites and altered metabolic pathways in
neurotoxic 3xTg-AD astrocytes. We then validated changes in key
metabolic centers using a targeted approach. In addition to meeting
growth and energy demands, metabolites regulate systemic functions
such as inflammation [16,17]. The current results illustrate these char-
acteristics. Pathway analysis suggested a number of associated biolog-
ical processes, mainly related to amino acid and central carbon
metabolism, as well as arachidonic acid metabolism. Furthermore,
metabolome-transcriptome associations supported these findings [18].

2. Methods
2.1. Animals

The animal procedures were approved by the Institutional Animal
Ethics Committee (CEUA-CUDIM) in accordance with the international

guidelines followed by the National Animal Experimentation Committee
(CNEA) for the use of live animals. As in previous work, both female
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homozygous 3xTg-AD (B6;129-Tg(APPSwe, tauP301L)1Lfa
Psenl(tmlMpm)/Mmjax strain) [19] and female non-transgenic wild-type
(non-Tg) mice (C57BL/ 6 J) (The Jackson Laboratory) were raised and
housed in a CUDIM SPF centralized animal facility with a 12-h light-dark
cycle and ad libitum access to food and water [14].

2.2. Astrocyte cultures from adult and neonatal mice

Neurotoxic astrocyte cultures were prepared from the cerebral cortex
and hippocampus of 9- to 10-month-old 3xTg-AD female mice according
to previously described methods [14]. Female animals were used since
sex differences in the development of the pathology have been described
in this AD murine model, with a greater expression of transgenes in fe-
males [20,21]. Astrocytes isolated from 9- to 10-month-old non-Tg mice
were not used as controls in our studies due to the low yield achieved
[14]. Instead, astrocytic cultures derived from neonatal non-Tg mice as
well as astrocytes from neonatal 3xTg-AD mice were used as controls.
These non-toxic controls allowed us to assess whether astrocytes from
this mice model of AD exhibit alterations when isolated before the dis-
ease onset. Nontoxic control astrocyte cultures were derived from the
cerebral cortex and hippocampus of neonatal (postnatal day 0-2) 3xTg-
AD and non-Tg (C57BL/6 J) mice following the methods described by
Cassina et al. with minor modifications [14,22]. All cell cultures were
amplified and maintained at 37 °C in a humidified incubator with 5 %
COa,.

2.3. Sample collection and preprocessing

Extraction of metabolites from cultured cells was performed based
on previous work by Go et al. (2015), Liu et al. (2019), as well as Sap-
cariu et al. (2014) [23-25]. One sample consisted of metabolites
extracted and pooled from 3 wells of a 6-well plate, pooling a total of 9
samples per condition. Briefly, confluent cells were washed with 0.9 %
(m/v) NaCl at room temperature, followed by the addition of 300 pL of
an ice-cold HPLC-grade acetonitrile-water solution mixture (1:2) per
well. This allowed us to scrape cells, precipitate proteins, and extract
metabolites. The extracts were kept at 4 °C for 30 min. and centrifuged
at 16,100g for 10 min to remove the protein and any remaining insoluble
fraction. Supernatants were transferred to screw-cap vials and dried in a
fast vacuum centrifuge (overnight, 35 °C).

2.4. High-resolution mass spectrometry-based metabolomics

Dried samples were reconstituted with 300 pL of 1:2 HPLC grade
water: acetonitrile solution mixture containing internal isotopic stan-
dard mixture [26,27]. Samples were mixed (10 s vortex) and shaken at
4 °C (overnight) before centrifugation to remove any remaining protein.
The resulting supernatant was transferred to low-volume autosampler
vials, kept at 4 °C, and analyzed in triplicate. Supernatants were
analyzed using a High-Field Q-Exactive Orbitrap instrument (Thermo-
Fisher; Waltham MA) coupled to a Thermo Dionex Ultimate 3000 liquid
chromatography system (120,000 resolution with scan range 85-1275
m/z). We utilized a dual-column chromatography pipeline, the first
being a HILIC column (hydrophilic interaction liquid chromatographys;
ThermoFisher Scientific, Accucore, 50 x 2.1 mm, 2.6 pm) operated in
parallel to our second column, a reverse phase column (C18; Higgins
Analytical, 50 x 2.1 mm, 2.6 pm) for simultaneous analytical separation
on one column while flushing of the other. Dual electrospray ionization
(ESI) was used for analysis with positive ESI for the HILIC column
(HILIC+), and negative ESI was used with the C18 reverse phase column
(C18-). A sample volume of 10 pL was injected for analysis on each
column. The flow rate of the HILIC column was maintained at 0.35 mL/
min until 1.5 min, increased to 0.4 mL/min at 4 min and held for 1 min,
resulting in a total analytical run time of 5 min. Mobile Phases A and B
were LCMS grade water and acetonitrile, respectively. Mobile phase C
was composed of 2 % formic acid (v/v) in water. Mobile phase
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conditions consisted of 22.5 % A, 75 % B, 2.5 % C which was held for 1.5
min, with a linear gradient to 77.5 % A, 20 % B, 2.5 % C at 4 min, and
held for 1 min. The HILIC column was then flushed for 5 min with a wash
solution of 77.5 % A, 20 % B, 2.5 % C. For the reverse-phase C18 column,
the flow rate was maintained at 0.4 mL/min for 1.5 min and was then
increased to 0.5 mL/min at 2 min and held constant for 3 min. Mobile
Phases A and B were LCMS-grade water and acetonitrile, respectively.
Mobile phase C was 10 mM ammonium acetate in water. Mobile phase
conditions for the C18 column were 60 % A, 35 % B, 5 % C for 0.5 min,
with a linear gradient to 0 % A, 95 % B, 5 % C starting at 1.5 min, and
held for 3.5 min, resulting in a 5 min run. The reverse phase column was
flushed with 0 % A, 95 % B, 5 % C for 2.5 min, followed by an equili-
bration solution of 60 % A, 35 % B, 5 % C for the remaining 2.5 min.
Collected mass spectral data were analyzed for features using Xcaliber
(ThermoFisher; Waltham MA). Ultra-high resolution mass spectrometry
operating at 60,000 and 120,000 resolution has previously been shown
to provide effective metabolite quantification in biological extracts [28]
and the use of complementary chromatography and ionization phases
have been shown to improve the detection of endogenous and exoge-
nous chemicals. Raw data is available at the NIH Common Fund’s Na-
tional Metabolomics Data Repository (NMDR) website, the
Metabolomics Workbench, https://www.metabolomicsworkbench.org
where it has been assigned Study ID ST003515. The data can be accessed
directly via its Project DOI: https://doi.org/10.21228/M8DR6G [29].

2.5. Metabolomics data processing and statistical analysis

Raw mass spectral data files were converted to computable docu-
ment format (CDF) using Xcalibur file conversion software (Thermo
Fisher Scientific, San Diego, CA) for further processing. Data were pro-
cessed for peak extraction, noise filtering, m/z and retention time
alignment, and quantification of ion intensities using apLCMS [30] with
enhanced data extraction using xMSanalyzer [31]. xMSanalyzer im-
proves feature detection through systematic data re-extraction, statisti-
cal filtering and fusion [31]. Metabolite feature values were summarized
by the median in triplicate and subjected to quality assessment. The
samples were filtered considering an overall Pearson correlation of
technical replicates of (r) > 0.70 and a cut-off coefficient of variation of
75 %. Considering the number of missing values, one sample outlier was
further removed from the C18 and HILIC cell extraction feature tables.
Data were log2 transformed and quantile normalized for subsequent
analyses. Log transformation reduces heteroscedasticity, so that each
metabolite has a mean of 0 and a standard deviation of 1, and quantile
normalization reduces variability between samples [32]. Then, the ob-
tained data sets were used for statistical analysis.

Principal component analysis (PCA) was performed using R packages
implemented on the MetaboAnalyst server to visualize the cluster dis-
tribution according to the variation in feature intensity patterns between
samples. Selection of differentially expressed m/z features was per-
formed using linear model for microarray data analysis (LIMMA) [33]. A
Benjamini-Hochberg false discovery rate (FDR) of 20 % was then applied
to adjust for multiple comparisons and identify those metabolites of
greatest interest [34]. To visualize the distributions of differentially
expressed features, a colour-coded heat map with two-way hierarchical
cluster analysis (HCA) was performed using the hclust function in R to
determine the clustering pattern of selected samples and m/z features.

All statistical and computational analysis was performed in R soft-
ware (R Project for Statistical Computing, Vienna, Austria).

2.6. Metabolite feature annotation and pathway enrichment analysis

Metabolite features were annotated using two approaches. On the
one hand, features were annotated by searching the metabolic databases
of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the
Human Metabolome Database (HMDB) for putative matches to known
metabolites using the package R xMSannotator with m/z threshold (+5
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ppm) [35-37]. xMSannotator uses a multilevel clustering procedure
based on feature intensity across all samples, retention time, mass
defect, isotope/adduct patterns, intensity correlations between samples,
and knowledge of the biochemical pathways to assign confidence levels
in the annotations [37]. We prioritize levels 2 (medium confidence) and
3 (high confidence). On the other hand, discriminant features were
processed through Mummichog 2.0 (available in the public domain at
http://mummichog.org/), a program that performs putative metabolite
annotation and pathway enrichment analysis in a single step [38]. A
biological process is expected to favor a more connected network rather
than random distributions. This procedure then assigns putative
metabolite matches based on which pathways are enriched within the
metabolite set. Mummichog uses a reference model derived from the
integration of the KEGG, UCSD Recon1 and Edinburgh human metabolic
networks. Features that differed at p < 0.05 were selected, permutation
tests (p < 0.05) were used in the pathway enrichment analysis, and a
threshold of 5 ppm was used for feature matching. Significant pathways
were selected if they included a minimum of 4 matching metabolites.
The annotations were verified manually to verify consistency between
both procedures. Some annotations were further supported based on
comparison of adducts, m/z and retention time with an internal database
of previously confirmed metabolites [25].

2.7. Evaluation of metabolome-transcriptome association with xMWAS

The presented metabolomic data were integrated with previous
transcriptomic data (n = 3) of 3xTg-AD astrocytes using xXMWAS, an
integration program based on the sparse partial least squares (sPLS)
regression method [39]. sPLS is a regression-based modeling approach
that simultaneously performs variable selection and data integration
[40]. Additionally, the software performs community detection (groups
of nodes strongly connected to other nodes in the same community, but
with sparse connections to the rest of the network) using the multilevel
community detection algorithm [41]. All data were log-transformed,
specifically transcriptomic data were also voom-normalized and meta-
bolic features were quantile normalized. To compensate for the fact that
these data sets came from different sample data tables, they were
expanded to generate all possible combinations. The thresholds for
determining significant associations were set as follows: correlation
threshold |r| > 0.6 and p < 0.05 as determined by Student’s t-test.

2.8. Targeted metabolite detection

Selected metabolites were validated by targeted detection [25].
Briefly, extracts from astrocytic cell cultures were processed as
described above and the selected amino acids GABA and glutamate were
detected using a UHPLC/MS Thermo scientific Ultimate 3000 RS
coupled to a Thermo scientific ISQ™ EC single quadrupole mass spec-
trometer system, as done in previous work [42]. Samples were recon-
stituted in hydrochloric acid 0.1 M, and the mixture was centrifuged at
13,000 xg for 10 min at 4 °C. The supernatants were then filtered
through cellulose acetate syringe filters (2.5 mm diameter, 0.22 pm pore
size; GVS) and analyzed by UHPLC/MS, according to the method of Soo
Hyun Park et al. (Thermo Scientific, application note 73,151) for sepa-
ration and detection of amino acids in wine, with minor modifications.
Modifications included the reduction of the flow of the mobile phase to
0.3 mL/min and the use of an injection volume of 5 pL. The mobile phase
used was a mixture of mobile phase A, which contained 10 % of a 200
mM ammonium formate solution in acetonitrile at pH = 2.8 and a mo-
bile phase B, which contained 10 % of a 200 mM ammonium formate
solution in water at pH = 2.8. The mobile phase was injected during the
run according to the gradient presented by Lozano et al. (2022) [42] (see
Supplementary Table 3), while the detection was made using the single
ion monitoring mode in the positive mode selecting an ion of m/z 104
corresponding to the value of m/z of GABA in its anionic form, and
single ion monitoring mode in the negative mode selecting an ion of m/z
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Fig. 1. Principal component analysis (score plot) of the metabolites detected in extracts of neurotoxic cells and neonatal astrocytes from the 3xTg-AD model. Left:
metabolites detected with C18 column chromatography and negative ionization mode, right: metabolites detected with HILIC column chromatography and positive

ionization mode. Figure rendered with the MetaboAnalyst server [43].

146.1 corresponding to the value of m/z of glutamate in its anionic form,
respectively. The peaks obtained were analyzed and integrated with the
Chromeleon™ Chromatography Data System (CDS) data processing
software (Thermo Fisher Scientific, EU) version 7.2. The concentration
values of the samples were calculated as the values of the areas of each
peak divided by the dilution factor of the injection and interpolated with
a standard injected in said run.

3. Results and discussion

3.1. Untargeted metabolomics distinguishes symptomatic astrocytes
derived from 3xTg-AD mice from those obtained from presymptomatic
3xTg-AD neonates

Untargeted metabolomics of cell extracts from neurotoxic “old”
3xTg-AD (Tg.Old), neonatal 3xTg-AD (Tg.Neo), and wild-type neonatal
(Wt.Neo) astrocytes was performed under two analytical schemes: based
on C18 column chromatography with negative ionization mode (C18-)
and HILIC column chromatography with positive ionization mode
(HILIC+), respectively. Although the focus of the present study is to
assess metabolic changes that have arisen from age and disease pro-
gression but not from transgenesis per se, our initial experimental design
also included astrocytes isolated from neonatal wild-type mice (Wt.
Neo). Principal component analysis of the metabolites found in cell
extracts detected features with discriminatory value, although they
covered around 10 % of the observed variation, which could translate
into a relatively small number of discriminant metabolites (Fig. 1). The
remaining components include a similar amount of variation (not
shown). As we did in our previous transcriptomic study of these
neurotoxic astrocytes, we included Wt.Neo astrocytes as an additional
control. As detected in that study, it can be observed that Wt.Neo and Tg.
Neo astrocytes behave similarly (Fig. 1), presenting an almost complete
overlap of all principal components of the score plot (not shown).
Discriminatory features were evaluated by comparing Tg.Old astrocytes
with Tg.Neo astrocytes.

Approximately 5 k and 6 k features detected in C18- and HILIC+
acquisitions respectively met the filtering criteria. Differentially

expressed features were selected using LIMMA statistics with a lenient
threshold of FDR < 0.2, resulting in around 400 and 1000 features from
the C18- and HILIC+ datasets respectively. Heat maps of the C18- and
HILIC+ data sets showed significant clustering of 3xTg-AD neurotoxic
astrocytes separated from 3xTg-AD neonatal astrocytes, illustrating the
reproducibility of the patterns within each group and their discriminant
value (Fig. 2, top panel). The distribution of discriminative features
along the m/z dimension can be visualized using Manhattan plots
(Fig. 2, lower panel), which indicate chemical properties similar to the
rest of the metabolic features in the data sets. Similar behavior can be
observed along the retention time dimension (not shown). Approxi-
mately 36 % of the selected C18- features and 38 % of the selected
HILIC+ features are upregulated.

3.2. Associations between altered metabolic and signaling pathways

Mummichog pathway analysis was performed to identify altered
biochemical pathways and obtain metabolite annotations for differen-
tially expressed features potentially involved in them. Fig. 3 presents a
list of pathways detected by this procedure. Taking into account the
overlapping pathways, the results of the C18 data set can be summarized
as pathways related to central carbon metabolism and the metabolism of
amino acids such as Glycine, serine, alanine and threonine, Glutamate
metabolism, and Glycolysis and gluconeogenesis. Results from the HILIC
data set include pathways related to Arachidonic acid metabolism in
addition to pathways related to amino acid metabolism. The identified
pathways are among the most relevant centers of astrocyte metabolism,
as will be discussed later. The annotations of the associated metabolites
were complemented with the results from xMSAnnotator. Up to 100
differentially expressed features from the C18 and HILIC datasets were
annotated with medium and high confidence levels (see Supplementary
Table 1). The annotations were further supported by comparison with an
internal list of previously validated metabolites [25], as presented in
Table 1. These most reliable annotated metabolites illustrate and sup-
port previously found pathways.

As supporting evidence for the present results, we set out to more
comprehensively study the associations between the current untargeted
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Fig. 2. Differentially expressed metabolic features detected in cell extracts from neurotoxic and neonatal astrocytes from the 3xTg-AD model (LIMMA analysis). A.
Clustering analysis (all significant features in rows, samples in columns). B. Manhattan type 1 plot presenting the negative log10(p-value) of the metabolite features
as a function of its mass/charge ratio. Left: metabolites detected with C18 column chromatography and negative ionization mode, right: metabolites detected with
HILIC column chromatography and positive ionization mode. From bottom to top, features above the first dashed horizontal line were significant with a p-value
<0.05, and above the second dashed line significant with a g-value (FDR) <0.2. A total of 382 features were selected from 5294 filtered features detected by C18
column chromatography and negative ionization mode. A total of 1041 features were selected from 6189 filtered features detected by HILIC column chromatography
and positive ionization mode. Red: higher expression in neurotoxic astrocytes; blue: lowest expression. Abbreviation: LIMMA, linear models for microarray data. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

metabolomics data and our previously reported gene expression data
[18]. We specifically used the xMWAS multi-omics approach that can
potentially identify concomitant or intertwined changes between
different regulatory levels. Transcripts and correlated discriminant
metabolites (differentially expressed genes, DEGs) were then obtained.
The consistency of the xMWAS results with the previous analysis was
verified by an overrepresentation analysis of DEGs on the STRING web
server. Overrepresented KEGG pathways obtained from upregulated
DEGs included Protein processing in endoplasmic reticulum, RNA transport,
Toll-like receptor signaling pathway, NF-kappa B signaling pathway,

Toxoplasmosis, N-Glycan biosynthesis, Folate biosynthesis; and of nega-
tively regulated DEGs: Adherens junction, Glycine, serine and threonine
metabolism, Rap1 signaling pathway and cAMP signaling pathway, among
others. In this sense, the results are consistent with previous findings and
highlight DEGs that could be involved in the metabolic pathways
detected. Among these DEGs, the various metabolic enzymes included
can be grouped into those related to the metabolism of fatty acids and
related compounds (sphingolipids, glycosphingolipids, arachidonic
acid), central carbon metabolism (oxidative phosphorylation, meta-
bolism of amino acids, etc.), N-glycan and glycosaminoglycan
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Fig. 3. Mummichog pathway analysis of differentially expressed metabolite features. Size corresponds to the total number of known metabolites in a given pathway,
and overlap corresponds to the number of matching metabolic features that are differentially expressed. Pathways were considered to differ between groups if p <

0.05 and overlapped >4.

Table 1

Prevalidated cellular metabolites detected by high-resolution metabolomics. Annotations of selected metabolites are based on comparison with an internal database of
previously confirmed metabolites (similar adduct, m/z and retention time) [25]. Pathway information compiled from Mummichog results and KEGG metabolite

annotations.
CELL METABOLITES
Chemical ID  Confidence Mz Time P value Max fold change Name Adduct Pathways
(log2)
C05984 2 103.0400 48.5 0.0012 —0.93 2-Hydroxybutyrate M-H Butanoate metabolism
03761 2 161.0456 509  0.0026 ~1.72 3-Hydroxy-3- M-H
methylglutarate
C01879 3 130.0499 94.4 0.0004 -1.82 5-Oxoproline M+ H Glutathione metabolism
C06428 3 301.2175  191.7 0.0055 0.94 Eicosapentaenoic acid M-H
C02693 2 175.0866 64.6 0.0292 —0.80 Indole-3-acetamide M+H Tryptophan metabolism
C00637 3 158.0611 78.3 0.0106 -1.16 Indoleacetaldehyde M-H Tryptophan metabolism
C00025 3 147.0490 33.7 0.0138 1.72 L-Glutamate IE{I{I]‘ Glutamate metabolism
C00186 3 89.0244 46.1 0.0002 —1.55 L-Lactate M-H Glycolysis and gluconeogenesis
C00149 2 133.0143 46.4 0.0035 —1.49 L-Malate M-H Glycolysis and gluconeogenesis
€00065 2 106.0499 116  0.0165 227 L-Serine M+ H Glycine, serine and threonine
metabolism
€00078 2 203.0826  50.2  0.0023 ~1.61 L-Tryptophan M-H Glycine, serine and threonine
metabolism
C00624 2 188.0565 35.9 0.0002 —2.14 N-Acetyl-L-glutamate M-H Arginine biosynthesis
C01004 2 138.0550 81.8 0.0123 2.37 N-Methylnicotinate M+ H Nicotinate and nicotinamide metabolism
C00153 3 123.0553 58.7 0.0210 —2.42 Nicotinamide M+H Nicotinate and nicotinamide metabolism
C02862 2 232.1541 77.5 0.0178 -1.78 O-Butanoylcarnitine M+H
C03017 2 218.1386 82 0.0000 —-4.90 O-Propionylcarnitine M+ H
C00245 2 126.0220 78.9 0.0005 —2.94 Taurine M+H Neuroactive ligand-receptor interaction

biosynthesis, and folate metabolism (Fig. 4). Although these groups
include up- and down-regulated DEGs, members of carbon and fatty acid
metabolism are primarily down-regulated; while N-glycan, glycosami-
noglycan, and folate metabolisms are mainly upregulated. Furthermore,
some enzymes related to sphingolipid and arachidonic acid metabolism
are upregulated. The selected metabolites reflect these changes: there is
a general downregulation of fatty acyls, glycerophospholipids and car-
boxylic acids, among other metabolites, and an upregulation of some
metabolites such as leukotriene A4. A subset of representative correlated
metabolites is presented in Fig. 5 (see full list of medium and high
confidence annotated metabolites in Supplementary Table 2). Taking
this broad view into account, it is worth noting that suggested alter-
ations in the endoplasmic reticulum (ER) could underlie the observed
metabolic changes. The ER is the main cellular compartment involved in
protein trafficking and folding, among other functions. Failure in the

adaptive capacity of the ER results in the activation of stress responses
(Unfolded Protein Response) that in different contexts can result in the
activation of proinflammatory pathways, metabolic alterations and
increased proliferation [44-47]. Cancer cells illustrate many of these
changes, for example, through the action of the transcription factor c-
Myec, which interestingly appears to be upregulated in Tg.Old astrocytes
based on transcriptomics data. ER stress-related alterations are also
critical in chronic metabolic diseases such as obesity and type 2 diabetes,
making them an interesting therapeutic target [48-50].

3.3. Key metabolite alterations involved in astrocyte energetics and
signaling

The results presented indicate perturbations in essential centers of
brain homeostasis, including energy metabolism, redox metabolism,
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METABOLIC ENZYMES (Up-regulated )

Ptgis; prostaglandin 12 (prostacyclin) synthase
St3gal2; ST3 beta-galactoside alpha-2,3-sialyltransferase 2
Cers5; ceramide synthase S
Dse; dermatan sulfate epimerase
Mgat2; mannoside acetylglucosaminyltransferase 2
Stt3a; STT3, subunit of the oligosaccharyltransferase complex,...
Ggct; gamma-glutamyl cyclotransferase
Setd1a; SET domain containing 1A
Ndufb1l; NADH:ubiquinone oxidoreductase subunit B11
Fpgs; folylpolyglutamyl synthetase
Spr; sepiapterin reductase

METABOLIC ENZYMES (Down-regulated )

Gldc; glycine decarboxylase
Atplb2; ATPase, Na+/K+ transporting, beta 2 polypeptide
Ldhb; lactate dehydrogenase B
Ckb; creatine kinase, brain
Idh2; isocitrate dehydrogenase 2 (NADP+), mitochondrial
Pfkm; phosphofructokinase, muscle
Mccc2; methylcrotonoyl-Coenzyme A carboxylase 2 (beta)
Plcd4; phospholipase C, delta 4

B3galtl; UDP-Gal:betaGIcNAc beta 1,3-galactosyltransferase,...
Acox1; acyl-Coenzyme A oxidase 1, palmitoyl

Ndst1; N-deacetylase/N-sulfotransferase (heparan...
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Fig. 4. Selected enzymes based on xXMWAS association analysis between transcriptome and metabolome. Enzymes colored in blue are associated with the metabolism
of fatty acids and related compounds (sphingolipids, glycosphingolipids, arachidonic acid); green: central carbon metabolism (oxidative phosphorylation, amino acid
metabolism, etc.); orange: biosynthesis of N-glycans and glycosaminoglycans; violet: folate metabolism. For the sake of brevity, only a few representative members
are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

signaling and inflammatory processes. In Fig. 5 we present some
representative and confidently annotated metabolites that illustrate
these changes. In this section we discuss the role and possible impact of
these changes on homeostasis and the disease process. In particular, the
change in the amino acid glutamate is probably one of the most relevant
for astrocyte function [51,52] and this particular alteration was verified
using a targeted approach (Fig. 6). Glutamate participates in a series of
functions in the central nervous system, as an energy metabolite and
neurotransmitter. Glutamate released by neurons is absorbed by astro-
cytes, where the enzyme glutamine synthetase converts it into glutamine
and the latter returns to the neurons. In contrast, glutamine can be
converted to glutamate by glutaminase (Gls). Consistent with the
increased abundance of glutamate in neurotoxic astrocytes, this enzyme
appears to be upregulated based on RNA-seq data [18]. Some of the
accumulated glutamate may also undergo oxidative degradation.
Glutamate imbalance is associated with neurotoxicity as it promotes
oxidative stress and inflammation through different mechanisms such as
direct interaction with the receptor and promotion of arachidonic acid
metabolism or glutathione deprivation [53]. This phenomenon has been
observed in various neurodegenerative diseases, including AD and
amyotrophic lateral sclerosis (ALS) [54,55]. In this sense, the inhibition
of glutaminase by compounds such as bis-2-(5-phenylacetamido-1,2,4-
thiadiazol-2-yl)ethyl sulfide (BPTES) is an interesting therapeutic
avenue. In addition to increased glutamate levels, altered levels of serine
and tryptophan, among other metabolites, have been associated with
inflammation and oxidative stress in the nervous system, a feature that
could arise from increased amino acid catabolism [56-61].

In addition to the glutamate detected in the metabolomic study, we
also specifically evaluated gamma aminobutyric acid (GABA), another
important energy metabolite and neurotransmitter cycled between as-
trocytes and neurons, which has a higher abundance in neurotoxic as-
trocytes. Aberrant GABA production by monoamine oxidase-B (MAO-B)

has been observed in reactive astrocytes and may be associated with
memory impairment in murine models of AD [62,63]. Multiple MAO-B
inhibitors have been proposed for the treatment of AD [64] supported by
the fact that perturbations in this enzyme have been linked to AD and
Parkinson’s pathology [65,66]. In our previous study, we observed a
notable increase in the level of MAO-B protein in 3xTg-AD neurotoxic
astrocytes, although not statistically significant [14]. It has been hy-
pothesized that increased GABA content in astrocytes could emerge in
the early stages of AD as a coping mechanism to reduce plaque-mediated
neuronal hyperactivity, so further research is needed to clarify its
therapeutic potential [67,68].

Other high confidence annotations indicate a net decrease in the TCA
intermediates, lactate and malate (pyruvate can be observed, but with a
low confidence score) and possibly an increase in the pentose phosphate
pathway metabolite, phosphoribosylpyrophosphate (PPP) (see Supple-
mentary Material). PPP produces nicotinamide adenine dinucleotide
phosphate, a cofactor necessary for restoration of reduced glutathione
[69], cell growth and proliferation [70,71]. It can play a key role in
regulating vascular function by altering the function of ion channels,
promoting cell proliferation, improving cholesterol and fatty acid syn-
thesis, modulating immune system function, and increasing oxidation
[72]. In neurons it may have a protective function through its effect on
oxidative stress [69,73].

Previous transcriptomic data suggested a shift from glycolysis to PPP
(downregulation of Pfkp, Pfkp and Pfkfb3), along with a compensatory
adjustment in the citric acid cycle toward anabolism (upregulation of
Ldha and downregulation of Ldhb), glutaminolysis (positive regulation
of Glul/GS) and alterations in the respiratory chain [18]. Of note, similar
alterations can be observed in other cell types, particularly malignant
cells [74-76]. A reduction in lactate is then unexpected, as suggested by
the metabolomics results. However, these represent steady-state levels
of metabolic intermediates and do not directly report associated fluxes,
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Fig. 5. Boxplot of selected metabolites from high-resolution metabolomics. The metabolites presented are a subset of metabolites correlated with the astrocytic
transcriptomic profile based on xXMWAS association analysis and with previously validated annotations and/or medium-high confidence annotations from
xMSAnnotator. See the full list in Supplementary Table 2.

helps reduce oxidative stress by preventing the accumulation of toxic
Glutamate GABA long-chain acyl-CoA metabolites [77]. Decreases in carnitines and genes
*

» » 10.0 * related to fatty acid metabolism have been associated with aging in
§ 40 § human, mouse, and other animal models [77-80]. Population studies
g g 75 have linked carnitine depletion to an increased risk of memory impair-
O 30 o ment and Alzheimer’s disease [81,82]. In this sense, supplementation
@ @ with carnitines could have beneficial effects on senescence [83]. Taurine
020 o 5.0 has been associated with a number of functions including energy
® ® metabolism, ER stress, neuromodulation and calcium homeostasis for
14 o which therapeutic potential has been proposed [84].
10 2.5 . Another important alteration arising from our current results is in the
_ == == metabolism of arachidonic acid (AA), which involves prostaglandins and
0 — 0.0 . other mediators of inflammatory responses (Table 1, Fig. 4). Annotated
Tg.Neo Tg.Old Wt.Neo Tg.Neo Tg.Old Wt.Neo metabolites include eicosapentaenoic acid, leukotriene A4, and throm-

boxane B2, among others (Fig. 5, Supplementary Table 1). Neuro-

Fig. 6. Validated amino acid perturbations in astrocyte cell extracts (targeted inflammation can have both positive and negative effects, and possible

analySI? by HR.MS),' PalrWlse Comparisons using the Wilcoxon exid r.ank sum neuroprotective effects of certain AA metabolites through activation of
test, with Benjamini-Hochberg p-value adjustment procedure. *Adjusted p-

value <0.05 for the comparison of Tg.Old versus Tg.Neo and Tg.Old versus the PPARgamma cascade have been described [85-87]. On the other
Wt.Neo. hand, alterations in this cascade have been observed in AD and detri-
mental effects of the associated metabolites have been described in
mouse models of the disease [88,89]. In addition to the detected me-
tabolites, transcriptomics results indicate a perturbation of the enzymes
Ptgis and Ptgs2 (Cox-2), among others, supporting an increase in the
production of some of these mediators [18]. These were found among
many altered mediators such as leucine-6 (I1-6), interleukin-33 (I1-33),
C—C motif chemokine ligand 2 (Ccl2), and stromal cell-derived factor 1
(Cxcl12), among others, illustrating a complex proinflammatory profile
with both beneficial, dual, or harmful effects on the nervous system
[18].

so their interpretation should be considered with caution. Although both
results suggest a relative increase in PPP with respect to the glycolytic
arm, the net balance between glycolysis and oxidative phosphorylation
is more ambiguous. There is evidence of a decrease in some subunits of
the respiratory chain complexes and a probable increase in the forma-
tion of supercomplexes that could have opposite effects [18]. These
conflicts should be further evaluated through functional studies.

Our results also support a decrease in the protective metabolites
carnitine and taurine against oxidative stress. Carnitine is an amino acid
that transfers long-chain fatty acids to the mitochondrial matrix for
B-oxidation, producing acetyl-CoA that then enters the TCA cycle. It
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Fig. 7. Hypothetical mechanism underlying the phenotype of 3xTg-AD neurotoxic astrocytes.

4. Conclusions

To our knowledge, this is the first study to evaluate metabolic
changes in astrocytes isolated from the 3xTg-AD mouse model. Our
findings suggest important alterations in key energy and signaling cen-
ters of the brain, such as glutamate intermediates, GABA and TCA. These
findings reinforce the concept that neurotoxic astrocytes could have
compromised neuronal support capacity and/or directly have a delete-
rious effect through aberrant release of neurotransmitters. Furthermore,
we observed an increase in proinflammatory mediators related to
arachidonic acid metabolism. In a broader sense, our findings suggest
that the previous alterations occur as part of a stress response triggered
in the endoplasmic reticulum (Fig. 7). This response may not necessarily
be harmful in its early stages, but constitutes a survival or damage
control mechanism of astrocytes, since many of the annotated metabo-
lites may have dual functions in the brain. Further investigations should
be performed to confirm the existence of the suggested alterations, as
well as the detection of additional alterations in vivo and their role in
disease progression. Above all, our findings reinforce the value of as-
trocytes as a therapeutic target for neurodegenerative diseases.
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