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A B S T R A C T

Alzheimer’s disease (AD) is the most common form of dementia, affecting approximately 47 M people world
wide. Histological features and genetic risk factors, among other evidence, supported the amyloid hypothesis of 
the disease. This neuronocentric paradigm is currently undergoing a shift, considering evidence of the role of 
other cell types, such as microglia and astrocytes, in disease progression. Previously, we described a particular 
astrocyte subtype obtained from the 3xTg-AD murine model that displays neurotoxic properties in vitro. We 
continue here our exploratory analysis through the lens of metabolomics to identify potentially altered metab
olites and biological pathways.

Cell extracts from neurotoxic and control astrocytes were compared using high-resolution mass spectrometry- 
based metabolomics. Around 12 % of metabolic features demonstrated significant differences between neuro
toxic and control astrocytes, including alterations in the key metabolite glutamate. Consistent with our previous 
transcriptomic study, the present results illustrate many homeostatic and regulatory functions of metabolites, 
suggesting that neurotoxic 3xTg-AD astrocytes exhibit alterations in the Krebs cycle as well as the prostaglandin 
pathway.

This is the first metabolomic study performed in 3xTg-AD neurotoxic astrocytes. These results provide insight 
into metabolic alterations potentially associated with neurotoxicity and pathology progression in the 3xTg-AD 
mouse model and strengthen the therapeutic potential of astrocytes in AD.
Biological significance: Our study is the first high-resolution metabolomic characterization of the novel neurotoxic 
3xTg-AD astrocytes. We propose key metabolites and pathway alterations, as well as possible associations with 
gene expression alterations in the model. Our results are in line with recent hypotheses beyond the amyloid 
cascade, considering the involvement of several stress response cascades during the development of Alzheimer’s 
disease. This work could inspire other researchers to initiate similar studies in related models. Furthermore, this 
work illustrates a powerful workflow for metabolite annotation and selection that can be implemented in other 
studies.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative pathology 

characterized by memory loss, spatial and temporal disorientation, and 
progressive cognitive impairment [1,2]. Histologically, it is character
ized by the presence of amyloid plaques and neurofibrillary tangles as a 
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result of extracellular deposition of amyloid beta protein and intra
neuronal aggregation of hyperphosphorylated tau protein, respectively 
[1,2]. Although most cases are idiopathic, several genetic risk factors 
have been discovered, mainly related to the synthesis and processing of 
the amyloid protein [1,2]. This evidence is in line with the amyloid 
hypothesis, traditionally evaluated from a neuronocentric point of view. 
In this sense, an imbalance between the production and elimination of 
beta amyloid would trigger inflammatory and oxidative stress processes 
that would ultimately lead to the loss of synaptic integrity, neuronal 
connectivity and, ultimately, to progressive regional neurodegeneration 
[3].

Although one of the main focuses of research has been the role of tau 
and beta amyloid protein aggregates in neuronal death, it is well known 
that the pathology of AD is multifactorial and involves an interaction of 
many risk factors and processes such as vascular pathology, inflamma
tion and metabolic alterations [4–6]. This has led to the need to further 
study the role of other important cellular players such as glia and their 
associated processes. In particular, astrocytes are glial cells that have 
key functions in brain homeostasis, such as synapse regulation, trophic 
supply, and waste removal, among others [7]. Astrocytes respond to 
tissue damage by assuming different phenotypes widely known as 
astrocyte reactivity or astrogliosis [8]. In this sense, multiple studies 
point to early imbalances in astrocyte function and morphological 
changes associated with the progression of AD, as well as their contri
bution to both neuroinflammation and neuroprotection in various dis
eases and brain models [9–13].

Transgenic mouse models are invaluable tools to improve our un
derstanding of diseases. In the present work we use the 3xTg-AD mouse 
model of AD, which replicates many features of the disease, including 
plaque and tangle pathology, age-related cognitive deficits, astrocyte 
reactivity, and brain atrophy. In previous studies, we isolated and 
cultured astrocytes from the cortex and hippocampus of 10-month-old 
symptomatic 3xTg-AD mice that exhibited a high proliferation rate, 
differential expression of astrocyte markers, and the ability to mediate 
neuronal degeneration [14]. The results added evidence to the hy
pothesis that microenvironment-induced changes in astrocyte function 
during disease progression may promote or accelerate 
neurodegeneration.

In the present work we expand the description of these neurotoxic 
astrocytes through the metabolomic lens. Metabolomics is an emerging 
discipline interested in the study of the global collection of small mol
ecules in the body or cells that reflects the combined effect of genetic 
factors and environmental exposures on phenotype [15]. In particular, 
untargeted approaches do so without a priori knowledge of the metab
olites involved. A currently untargeted high-resolution metabolomics 
strategy typically involves the use of liquid chromatography coupled 
with high-resolution mass spectrometry to accurately separate and 
detect the mass and abundance of distinct metabolic features. We used 
this approach to identify metabolites and altered metabolic pathways in 
neurotoxic 3xTg-AD astrocytes. We then validated changes in key 
metabolic centers using a targeted approach. In addition to meeting 
growth and energy demands, metabolites regulate systemic functions 
such as inflammation [16,17]. The current results illustrate these char
acteristics. Pathway analysis suggested a number of associated biolog
ical processes, mainly related to amino acid and central carbon 
metabolism, as well as arachidonic acid metabolism. Furthermore, 
metabolome-transcriptome associations supported these findings [18].

2. Methods

2.1. Animals

The animal procedures were approved by the Institutional Animal 
Ethics Committee (CEUA-CUDIM) in accordance with the international 
guidelines followed by the National Animal Experimentation Committee 
(CNEA) for the use of live animals. As in previous work, both female 

homozygous 3xTg-AD (B6;129-Tg(APPSwe, tauP301L)1Lfa 
Psen1(tm1Mpm)/Mmjax strain) [19] and female non-transgenic wild-type 
(non-Tg) mice (C57BL/ 6 J) (The Jackson Laboratory) were raised and 
housed in a CUDIM SPF centralized animal facility with a 12-h light-dark 
cycle and ad libitum access to food and water [14].

2.2. Astrocyte cultures from adult and neonatal mice

Neurotoxic astrocyte cultures were prepared from the cerebral cortex 
and hippocampus of 9- to 10-month-old 3xTg-AD female mice according 
to previously described methods [14]. Female animals were used since 
sex differences in the development of the pathology have been described 
in this AD murine model, with a greater expression of transgenes in fe
males [20,21]. Astrocytes isolated from 9- to 10-month-old non-Tg mice 
were not used as controls in our studies due to the low yield achieved 
[14]. Instead, astrocytic cultures derived from neonatal non-Tg mice as 
well as astrocytes from neonatal 3xTg-AD mice were used as controls. 
These non-toxic controls allowed us to assess whether astrocytes from 
this mice model of AD exhibit alterations when isolated before the dis
ease onset. Nontoxic control astrocyte cultures were derived from the 
cerebral cortex and hippocampus of neonatal (postnatal day 0–2) 3xTg- 
AD and non-Tg (C57BL/6 J) mice following the methods described by 
Cassina et al. with minor modifications [14,22]. All cell cultures were 
amplified and maintained at 37 ◦C in a humidified incubator with 5 % 
CO2.

2.3. Sample collection and preprocessing

Extraction of metabolites from cultured cells was performed based 
on previous work by Go et al. (2015), Liu et al. (2019), as well as Sap
cariu et al. (2014) [23–25]. One sample consisted of metabolites 
extracted and pooled from 3 wells of a 6-well plate, pooling a total of 9 
samples per condition. Briefly, confluent cells were washed with 0.9 % 
(m/v) NaCl at room temperature, followed by the addition of 300 μL of 
an ice-cold HPLC-grade acetonitrile-water solution mixture (1:2) per 
well. This allowed us to scrape cells, precipitate proteins, and extract 
metabolites. The extracts were kept at 4 ◦C for 30 min. and centrifuged 
at 16,100g for 10 min to remove the protein and any remaining insoluble 
fraction. Supernatants were transferred to screw-cap vials and dried in a 
fast vacuum centrifuge (overnight, 35 ◦C).

2.4. High-resolution mass spectrometry-based metabolomics

Dried samples were reconstituted with 300 μL of 1:2 HPLC grade 
water: acetonitrile solution mixture containing internal isotopic stan
dard mixture [26,27]. Samples were mixed (10 s vortex) and shaken at 
4 ◦C (overnight) before centrifugation to remove any remaining protein. 
The resulting supernatant was transferred to low-volume autosampler 
vials, kept at 4 ◦C, and analyzed in triplicate. Supernatants were 
analyzed using a High-Field Q-Exactive Orbitrap instrument (Thermo
Fisher; Waltham MA) coupled to a Thermo Dionex Ultimate 3000 liquid 
chromatography system (120,000 resolution with scan range 85–1275 
m/z). We utilized a dual-column chromatography pipeline, the first 
being a HILIC column (hydrophilic interaction liquid chromatography; 
ThermoFisher Scientific, Accucore, 50 × 2.1 mm, 2.6 μm) operated in 
parallel to our second column, a reverse phase column (C18; Higgins 
Analytical, 50 × 2.1 mm, 2.6 μm) for simultaneous analytical separation 
on one column while flushing of the other. Dual electrospray ionization 
(ESI) was used for analysis with positive ESI for the HILIC column 
(HILIC+), and negative ESI was used with the C18 reverse phase column 
(C18-). A sample volume of 10 μL was injected for analysis on each 
column. The flow rate of the HILIC column was maintained at 0.35 mL/ 
min until 1.5 min, increased to 0.4 mL/min at 4 min and held for 1 min, 
resulting in a total analytical run time of 5 min. Mobile Phases A and B 
were LCMS grade water and acetonitrile, respectively. Mobile phase C 
was composed of 2 % formic acid (v/v) in water. Mobile phase 
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conditions consisted of 22.5 % A, 75 % B, 2.5 % C which was held for 1.5 
min, with a linear gradient to 77.5 % A, 20 % B, 2.5 % C at 4 min, and 
held for 1 min. The HILIC column was then flushed for 5 min with a wash 
solution of 77.5 % A, 20 % B, 2.5 % C. For the reverse-phase C18 column, 
the flow rate was maintained at 0.4 mL/min for 1.5 min and was then 
increased to 0.5 mL/min at 2 min and held constant for 3 min. Mobile 
Phases A and B were LCMS-grade water and acetonitrile, respectively. 
Mobile phase C was 10 mM ammonium acetate in water. Mobile phase 
conditions for the C18 column were 60 % A, 35 % B, 5 % C for 0.5 min, 
with a linear gradient to 0 % A, 95 % B, 5 % C starting at 1.5 min, and 
held for 3.5 min, resulting in a 5 min run. The reverse phase column was 
flushed with 0 % A, 95 % B, 5 % C for 2.5 min, followed by an equili
bration solution of 60 % A, 35 % B, 5 % C for the remaining 2.5 min. 
Collected mass spectral data were analyzed for features using Xcaliber 
(ThermoFisher; Waltham MA). Ultra-high resolution mass spectrometry 
operating at 60,000 and 120,000 resolution has previously been shown 
to provide effective metabolite quantification in biological extracts [28] 
and the use of complementary chromatography and ionization phases 
have been shown to improve the detection of endogenous and exoge
nous chemicals. Raw data is available at the NIH Common Fund’s Na
tional Metabolomics Data Repository (NMDR) website, the 
Metabolomics Workbench, https://www.metabolomicsworkbench.org
where it has been assigned Study ID ST003515. The data can be accessed 
directly via its Project DOI: https://doi.org/10.21228/M8DR6G [29].

2.5. Metabolomics data processing and statistical analysis

Raw mass spectral data files were converted to computable docu
ment format (CDF) using Xcalibur file conversion software (Thermo 
Fisher Scientific, San Diego, CA) for further processing. Data were pro
cessed for peak extraction, noise filtering, m/z and retention time 
alignment, and quantification of ion intensities using apLCMS [30] with 
enhanced data extraction using xMSanalyzer [31]. xMSanalyzer im
proves feature detection through systematic data re-extraction, statisti
cal filtering and fusion [31]. Metabolite feature values were summarized 
by the median in triplicate and subjected to quality assessment. The 
samples were filtered considering an overall Pearson correlation of 
technical replicates of (r) > 0.70 and a cut-off coefficient of variation of 
75 %. Considering the number of missing values, one sample outlier was 
further removed from the C18 and HILIC cell extraction feature tables. 
Data were log2 transformed and quantile normalized for subsequent 
analyses. Log transformation reduces heteroscedasticity, so that each 
metabolite has a mean of 0 and a standard deviation of 1, and quantile 
normalization reduces variability between samples [32]. Then, the ob
tained data sets were used for statistical analysis.

Principal component analysis (PCA) was performed using R packages 
implemented on the MetaboAnalyst server to visualize the cluster dis
tribution according to the variation in feature intensity patterns between 
samples. Selection of differentially expressed m/z features was per
formed using linear model for microarray data analysis (LIMMA) [33]. A 
Benjamini-Hochberg false discovery rate (FDR) of 20 % was then applied 
to adjust for multiple comparisons and identify those metabolites of 
greatest interest [34]. To visualize the distributions of differentially 
expressed features, a colour-coded heat map with two-way hierarchical 
cluster analysis (HCA) was performed using the hclust function in R to 
determine the clustering pattern of selected samples and m/z features.

All statistical and computational analysis was performed in R soft
ware (R Project for Statistical Computing, Vienna, Austria).

2.6. Metabolite feature annotation and pathway enrichment analysis

Metabolite features were annotated using two approaches. On the 
one hand, features were annotated by searching the metabolic databases 
of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the 
Human Metabolome Database (HMDB) for putative matches to known 
metabolites using the package R xMSannotator with m/z threshold (±5 

ppm) [35–37]. xMSannotator uses a multilevel clustering procedure 
based on feature intensity across all samples, retention time, mass 
defect, isotope/adduct patterns, intensity correlations between samples, 
and knowledge of the biochemical pathways to assign confidence levels 
in the annotations [37]. We prioritize levels 2 (medium confidence) and 
3 (high confidence). On the other hand, discriminant features were 
processed through Mummichog 2.0 (available in the public domain at 
http://mummichog.org/), a program that performs putative metabolite 
annotation and pathway enrichment analysis in a single step [38]. A 
biological process is expected to favor a more connected network rather 
than random distributions. This procedure then assigns putative 
metabolite matches based on which pathways are enriched within the 
metabolite set. Mummichog uses a reference model derived from the 
integration of the KEGG, UCSD Recon1 and Edinburgh human metabolic 
networks. Features that differed at p < 0.05 were selected, permutation 
tests (p < 0.05) were used in the pathway enrichment analysis, and a 
threshold of 5 ppm was used for feature matching. Significant pathways 
were selected if they included a minimum of 4 matching metabolites. 
The annotations were verified manually to verify consistency between 
both procedures. Some annotations were further supported based on 
comparison of adducts, m/z and retention time with an internal database 
of previously confirmed metabolites [25].

2.7. Evaluation of metabolome-transcriptome association with xMWAS

The presented metabolomic data were integrated with previous 
transcriptomic data (n = 3) of 3xTg-AD astrocytes using xMWAS, an 
integration program based on the sparse partial least squares (sPLS) 
regression method [39]. sPLS is a regression-based modeling approach 
that simultaneously performs variable selection and data integration 
[40]. Additionally, the software performs community detection (groups 
of nodes strongly connected to other nodes in the same community, but 
with sparse connections to the rest of the network) using the multilevel 
community detection algorithm [41]. All data were log-transformed, 
specifically transcriptomic data were also voom-normalized and meta
bolic features were quantile normalized. To compensate for the fact that 
these data sets came from different sample data tables, they were 
expanded to generate all possible combinations. The thresholds for 
determining significant associations were set as follows: correlation 
threshold |r| > 0.6 and p < 0.05 as determined by Student’s t-test.

2.8. Targeted metabolite detection

Selected metabolites were validated by targeted detection [25]. 
Briefly, extracts from astrocytic cell cultures were processed as 
described above and the selected amino acids GABA and glutamate were 
detected using a UHPLC/MS Thermo scientific Ultimate 3000 RS 
coupled to a Thermo scientific ISQ™ EC single quadrupole mass spec
trometer system, as done in previous work [42]. Samples were recon
stituted in hydrochloric acid 0.1 M, and the mixture was centrifuged at 
13,000 ×g for 10 min at 4 ◦C. The supernatants were then filtered 
through cellulose acetate syringe filters (2.5 mm diameter, 0.22 μm pore 
size; GVS) and analyzed by UHPLC/MS, according to the method of Soo 
Hyun Park et al. (Thermo Scientific, application note 73,151) for sepa
ration and detection of amino acids in wine, with minor modifications. 
Modifications included the reduction of the flow of the mobile phase to 
0.3 mL/min and the use of an injection volume of 5 μL. The mobile phase 
used was a mixture of mobile phase A, which contained 10 % of a 200 
mM ammonium formate solution in acetonitrile at pH = 2.8 and a mo
bile phase B, which contained 10 % of a 200 mM ammonium formate 
solution in water at pH = 2.8. The mobile phase was injected during the 
run according to the gradient presented by Lozano et al. (2022) [42] (see 
Supplementary Table 3), while the detection was made using the single 
ion monitoring mode in the positive mode selecting an ion of m/z 104 
corresponding to the value of m/z of GABA in its anionic form, and 
single ion monitoring mode in the negative mode selecting an ion of m/z 
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146.1 corresponding to the value of m/z of glutamate in its anionic form, 
respectively. The peaks obtained were analyzed and integrated with the 
Chromeleon™ Chromatography Data System (CDS) data processing 
software (Thermo Fisher Scientific, EU) version 7.2. The concentration 
values of the samples were calculated as the values of the areas of each 
peak divided by the dilution factor of the injection and interpolated with 
a standard injected in said run.

3. Results and discussion

3.1. Untargeted metabolomics distinguishes symptomatic astrocytes 
derived from 3xTg-AD mice from those obtained from presymptomatic 
3xTg-AD neonates

Untargeted metabolomics of cell extracts from neurotoxic “old” 
3xTg-AD (Tg.Old), neonatal 3xTg-AD (Tg.Neo), and wild-type neonatal 
(Wt.Neo) astrocytes was performed under two analytical schemes: based 
on C18 column chromatography with negative ionization mode (C18-) 
and HILIC column chromatography with positive ionization mode 
(HILIC+), respectively. Although the focus of the present study is to 
assess metabolic changes that have arisen from age and disease pro
gression but not from transgenesis per se, our initial experimental design 
also included astrocytes isolated from neonatal wild-type mice (Wt. 
Neo). Principal component analysis of the metabolites found in cell 
extracts detected features with discriminatory value, although they 
covered around 10 % of the observed variation, which could translate 
into a relatively small number of discriminant metabolites (Fig. 1). The 
remaining components include a similar amount of variation (not 
shown). As we did in our previous transcriptomic study of these 
neurotoxic astrocytes, we included Wt.Neo astrocytes as an additional 
control. As detected in that study, it can be observed that Wt.Neo and Tg. 
Neo astrocytes behave similarly (Fig. 1), presenting an almost complete 
overlap of all principal components of the score plot (not shown). 
Discriminatory features were evaluated by comparing Tg.Old astrocytes 
with Tg.Neo astrocytes.

Approximately 5 k and 6 k features detected in C18- and HILIC+
acquisitions respectively met the filtering criteria. Differentially 

expressed features were selected using LIMMA statistics with a lenient 
threshold of FDR < 0.2, resulting in around 400 and 1000 features from 
the C18- and HILIC+ datasets respectively. Heat maps of the C18- and 
HILIC+ data sets showed significant clustering of 3xTg-AD neurotoxic 
astrocytes separated from 3xTg-AD neonatal astrocytes, illustrating the 
reproducibility of the patterns within each group and their discriminant 
value (Fig. 2, top panel). The distribution of discriminative features 
along the m/z dimension can be visualized using Manhattan plots 
(Fig. 2, lower panel), which indicate chemical properties similar to the 
rest of the metabolic features in the data sets. Similar behavior can be 
observed along the retention time dimension (not shown). Approxi
mately 36 % of the selected C18- features and 38 % of the selected 
HILIC+ features are upregulated.

3.2. Associations between altered metabolic and signaling pathways

Mummichog pathway analysis was performed to identify altered 
biochemical pathways and obtain metabolite annotations for differen
tially expressed features potentially involved in them. Fig. 3 presents a 
list of pathways detected by this procedure. Taking into account the 
overlapping pathways, the results of the C18 data set can be summarized 
as pathways related to central carbon metabolism and the metabolism of 
amino acids such as Glycine, serine, alanine and threonine, Glutamate 
metabolism, and Glycolysis and gluconeogenesis. Results from the HILIC 
data set include pathways related to Arachidonic acid metabolism in 
addition to pathways related to amino acid metabolism. The identified 
pathways are among the most relevant centers of astrocyte metabolism, 
as will be discussed later. The annotations of the associated metabolites 
were complemented with the results from xMSAnnotator. Up to 100 
differentially expressed features from the C18 and HILIC datasets were 
annotated with medium and high confidence levels (see Supplementary 
Table 1). The annotations were further supported by comparison with an 
internal list of previously validated metabolites [25], as presented in 
Table 1. These most reliable annotated metabolites illustrate and sup
port previously found pathways.

As supporting evidence for the present results, we set out to more 
comprehensively study the associations between the current untargeted 

Fig. 1. Principal component analysis (score plot) of the metabolites detected in extracts of neurotoxic cells and neonatal astrocytes from the 3xTg-AD model. Left: 
metabolites detected with C18 column chromatography and negative ionization mode, right: metabolites detected with HILIC column chromatography and positive 
ionization mode. Figure rendered with the MetaboAnalyst server [43].
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metabolomics data and our previously reported gene expression data 
[18]. We specifically used the xMWAS multi-omics approach that can 
potentially identify concomitant or intertwined changes between 
different regulatory levels. Transcripts and correlated discriminant 
metabolites (differentially expressed genes, DEGs) were then obtained. 
The consistency of the xMWAS results with the previous analysis was 
verified by an overrepresentation analysis of DEGs on the STRING web 
server. Overrepresented KEGG pathways obtained from upregulated 
DEGs included Protein processing in endoplasmic reticulum, RNA transport, 
Toll-like receptor signaling pathway, NF-kappa B signaling pathway, 

Toxoplasmosis, N-Glycan biosynthesis, Folate biosynthesis; and of nega
tively regulated DEGs: Adherens junction, Glycine, serine and threonine 
metabolism, Rap1 signaling pathway and cAMP signaling pathway, among 
others. In this sense, the results are consistent with previous findings and 
highlight DEGs that could be involved in the metabolic pathways 
detected. Among these DEGs, the various metabolic enzymes included 
can be grouped into those related to the metabolism of fatty acids and 
related compounds (sphingolipids, glycosphingolipids, arachidonic 
acid), central carbon metabolism (oxidative phosphorylation, meta
bolism of amino acids, etc.), N-glycan and glycosaminoglycan 

Fig. 2. Differentially expressed metabolic features detected in cell extracts from neurotoxic and neonatal astrocytes from the 3xTg-AD model (LIMMA analysis). A. 
Clustering analysis (all significant features in rows, samples in columns). B. Manhattan type 1 plot presenting the negative log10(p-value) of the metabolite features 
as a function of its mass/charge ratio. Left: metabolites detected with C18 column chromatography and negative ionization mode, right: metabolites detected with 
HILIC column chromatography and positive ionization mode. From bottom to top, features above the first dashed horizontal line were significant with a p-value 
<0.05, and above the second dashed line significant with a q-value (FDR) <0.2. A total of 382 features were selected from 5294 filtered features detected by C18 
column chromatography and negative ionization mode. A total of 1041 features were selected from 6189 filtered features detected by HILIC column chromatography 
and positive ionization mode. Red: higher expression in neurotoxic astrocytes; blue: lowest expression. Abbreviation: LIMMA, linear models for microarray data. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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biosynthesis, and folate metabolism (Fig. 4). Although these groups 
include up- and down-regulated DEGs, members of carbon and fatty acid 
metabolism are primarily down-regulated; while N-glycan, glycosami
noglycan, and folate metabolisms are mainly upregulated. Furthermore, 
some enzymes related to sphingolipid and arachidonic acid metabolism 
are upregulated. The selected metabolites reflect these changes: there is 
a general downregulation of fatty acyls, glycerophospholipids and car
boxylic acids, among other metabolites, and an upregulation of some 
metabolites such as leukotriene A4. A subset of representative correlated 
metabolites is presented in Fig. 5 (see full list of medium and high 
confidence annotated metabolites in Supplementary Table 2). Taking 
this broad view into account, it is worth noting that suggested alter
ations in the endoplasmic reticulum (ER) could underlie the observed 
metabolic changes. The ER is the main cellular compartment involved in 
protein trafficking and folding, among other functions. Failure in the 

adaptive capacity of the ER results in the activation of stress responses 
(Unfolded Protein Response) that in different contexts can result in the 
activation of proinflammatory pathways, metabolic alterations and 
increased proliferation [44–47]. Cancer cells illustrate many of these 
changes, for example, through the action of the transcription factor c- 
Myc, which interestingly appears to be upregulated in Tg.Old astrocytes 
based on transcriptomics data. ER stress-related alterations are also 
critical in chronic metabolic diseases such as obesity and type 2 diabetes, 
making them an interesting therapeutic target [48–50].

3.3. Key metabolite alterations involved in astrocyte energetics and 
signaling

The results presented indicate perturbations in essential centers of 
brain homeostasis, including energy metabolism, redox metabolism, 

Fig. 3. Mummichog pathway analysis of differentially expressed metabolite features. Size corresponds to the total number of known metabolites in a given pathway, 
and overlap corresponds to the number of matching metabolic features that are differentially expressed. Pathways were considered to differ between groups if p ≤
0.05 and overlapped >4.

Table 1 
Prevalidated cellular metabolites detected by high-resolution metabolomics. Annotations of selected metabolites are based on comparison with an internal database of 
previously confirmed metabolites (similar adduct, m/z and retention time) [25]. Pathway information compiled from Mummichog results and KEGG metabolite 
annotations.

CELL METABOLITES

Chemical ID Confidence Mz Time P value Max fold change 
(log2)

Name Adduct Pathways

C05984 2 103.0400 48.5 0.0012 − 0.93 2-Hydroxybutyrate M-H Butanoate metabolism

C03761 2 161.0456 50.9 0.0026 − 1.72
3-Hydroxy-3- 

methylglutarate
M-H

C01879 3 130.0499 94.4 0.0004 − 1.82 5-Oxoproline M + H Glutathione metabolism
C06428 3 301.2175 191.7 0.0055 0.94 Eicosapentaenoic acid M-H
C02693 2 175.0866 64.6 0.0292 − 0.80 Indole-3-acetamide M + H Tryptophan metabolism
C00637 3 158.0611 78.3 0.0106 − 1.16 Indoleacetaldehyde M-H Tryptophan metabolism

C00025 3 147.0490 33.7 0.0138 1.72 L-Glutamate
M-H_ 
[− 1] Glutamate metabolism

C00186 3 89.0244 46.1 0.0002 − 1.55 L-Lactate M-H Glycolysis and gluconeogenesis
C00149 2 133.0143 46.4 0.0035 − 1.49 L-Malate M-H Glycolysis and gluconeogenesis

C00065 2 106.0499 116 0.0165 − 2.27 L-Serine M + H Glycine, serine and threonine 
metabolism

C00078 2 203.0826 50.2 0.0023 − 1.61 L-Tryptophan M-H
Glycine, serine and threonine 

metabolism
C00624 2 188.0565 35.9 0.0002 − 2.14 N-Acetyl-L-glutamate M-H Arginine biosynthesis
C01004 2 138.0550 81.8 0.0123 2.37 N-Methylnicotinate M + H Nicotinate and nicotinamide metabolism
C00153 3 123.0553 58.7 0.0210 − 2.42 Nicotinamide M + H Nicotinate and nicotinamide metabolism
C02862 2 232.1541 77.5 0.0178 − 1.78 O-Butanoylcarnitine M + H
C03017 2 218.1386 82 0.0000 − 4.90 O-Propionylcarnitine M + H
C00245 2 126.0220 78.9 0.0005 − 2.94 Taurine M + H Neuroactive ligand-receptor interaction
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signaling and inflammatory processes. In Fig. 5 we present some 
representative and confidently annotated metabolites that illustrate 
these changes. In this section we discuss the role and possible impact of 
these changes on homeostasis and the disease process. In particular, the 
change in the amino acid glutamate is probably one of the most relevant 
for astrocyte function [51,52] and this particular alteration was verified 
using a targeted approach (Fig. 6). Glutamate participates in a series of 
functions in the central nervous system, as an energy metabolite and 
neurotransmitter. Glutamate released by neurons is absorbed by astro
cytes, where the enzyme glutamine synthetase converts it into glutamine 
and the latter returns to the neurons. In contrast, glutamine can be 
converted to glutamate by glutaminase (Gls). Consistent with the 
increased abundance of glutamate in neurotoxic astrocytes, this enzyme 
appears to be upregulated based on RNA-seq data [18]. Some of the 
accumulated glutamate may also undergo oxidative degradation. 
Glutamate imbalance is associated with neurotoxicity as it promotes 
oxidative stress and inflammation through different mechanisms such as 
direct interaction with the receptor and promotion of arachidonic acid 
metabolism or glutathione deprivation [53]. This phenomenon has been 
observed in various neurodegenerative diseases, including AD and 
amyotrophic lateral sclerosis (ALS) [54,55]. In this sense, the inhibition 
of glutaminase by compounds such as bis-2-(5-phenylacetamido-1,2,4- 
thiadiazol-2-yl)ethyl sulfide (BPTES) is an interesting therapeutic 
avenue. In addition to increased glutamate levels, altered levels of serine 
and tryptophan, among other metabolites, have been associated with 
inflammation and oxidative stress in the nervous system, a feature that 
could arise from increased amino acid catabolism [56–61].

In addition to the glutamate detected in the metabolomic study, we 
also specifically evaluated gamma aminobutyric acid (GABA), another 
important energy metabolite and neurotransmitter cycled between as
trocytes and neurons, which has a higher abundance in neurotoxic as
trocytes. Aberrant GABA production by monoamine oxidase-B (MAO-B) 

has been observed in reactive astrocytes and may be associated with 
memory impairment in murine models of AD [62,63]. Multiple MAO-B 
inhibitors have been proposed for the treatment of AD [64] supported by 
the fact that perturbations in this enzyme have been linked to AD and 
Parkinson’s pathology [65,66]. In our previous study, we observed a 
notable increase in the level of MAO-B protein in 3xTg-AD neurotoxic 
astrocytes, although not statistically significant [14]. It has been hy
pothesized that increased GABA content in astrocytes could emerge in 
the early stages of AD as a coping mechanism to reduce plaque-mediated 
neuronal hyperactivity, so further research is needed to clarify its 
therapeutic potential [67,68].

Other high confidence annotations indicate a net decrease in the TCA 
intermediates, lactate and malate (pyruvate can be observed, but with a 
low confidence score) and possibly an increase in the pentose phosphate 
pathway metabolite, phosphoribosylpyrophosphate (PPP) (see Supple
mentary Material). PPP produces nicotinamide adenine dinucleotide 
phosphate, a cofactor necessary for restoration of reduced glutathione 
[69], cell growth and proliferation [70,71]. It can play a key role in 
regulating vascular function by altering the function of ion channels, 
promoting cell proliferation, improving cholesterol and fatty acid syn
thesis, modulating immune system function, and increasing oxidation 
[72]. In neurons it may have a protective function through its effect on 
oxidative stress [69,73].

Previous transcriptomic data suggested a shift from glycolysis to PPP 
(downregulation of Pfkp, Pfkp and Pfkfb3), along with a compensatory 
adjustment in the citric acid cycle toward anabolism (upregulation of 
Ldha and downregulation of Ldhb), glutaminolysis (positive regulation 
of Glul/GS) and alterations in the respiratory chain [18]. Of note, similar 
alterations can be observed in other cell types, particularly malignant 
cells [74–76]. A reduction in lactate is then unexpected, as suggested by 
the metabolomics results. However, these represent steady-state levels 
of metabolic intermediates and do not directly report associated fluxes, 

Fig. 4. Selected enzymes based on xMWAS association analysis between transcriptome and metabolome. Enzymes colored in blue are associated with the metabolism 
of fatty acids and related compounds (sphingolipids, glycosphingolipids, arachidonic acid); green: central carbon metabolism (oxidative phosphorylation, amino acid 
metabolism, etc.); orange: biosynthesis of N-glycans and glycosaminoglycans; violet: folate metabolism. For the sake of brevity, only a few representative members 
are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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so their interpretation should be considered with caution. Although both 
results suggest a relative increase in PPP with respect to the glycolytic 
arm, the net balance between glycolysis and oxidative phosphorylation 
is more ambiguous. There is evidence of a decrease in some subunits of 
the respiratory chain complexes and a probable increase in the forma
tion of supercomplexes that could have opposite effects [18]. These 
conflicts should be further evaluated through functional studies.

Our results also support a decrease in the protective metabolites 
carnitine and taurine against oxidative stress. Carnitine is an amino acid 
that transfers long-chain fatty acids to the mitochondrial matrix for 
β-oxidation, producing acetyl-CoA that then enters the TCA cycle. It 

helps reduce oxidative stress by preventing the accumulation of toxic 
long-chain acyl-CoA metabolites [77]. Decreases in carnitines and genes 
related to fatty acid metabolism have been associated with aging in 
human, mouse, and other animal models [77–80]. Population studies 
have linked carnitine depletion to an increased risk of memory impair
ment and Alzheimer’s disease [81,82]. In this sense, supplementation 
with carnitines could have beneficial effects on senescence [83]. Taurine 
has been associated with a number of functions including energy 
metabolism, ER stress, neuromodulation and calcium homeostasis for 
which therapeutic potential has been proposed [84].

Another important alteration arising from our current results is in the 
metabolism of arachidonic acid (AA), which involves prostaglandins and 
other mediators of inflammatory responses (Table 1, Fig. 4). Annotated 
metabolites include eicosapentaenoic acid, leukotriene A4, and throm
boxane B2, among others (Fig. 5, Supplementary Table 1). Neuro
inflammation can have both positive and negative effects, and possible 
neuroprotective effects of certain AA metabolites through activation of 
the PPARgamma cascade have been described [85–87]. On the other 
hand, alterations in this cascade have been observed in AD and detri
mental effects of the associated metabolites have been described in 
mouse models of the disease [88,89]. In addition to the detected me
tabolites, transcriptomics results indicate a perturbation of the enzymes 
Ptgis and Ptgs2 (Cox-2), among others, supporting an increase in the 
production of some of these mediators [18]. These were found among 
many altered mediators such as leucine-6 (Il-6), interleukin-33 (Il-33), 
C–C motif chemokine ligand 2 (Ccl2), and stromal cell-derived factor 1 
(Cxcl12), among others, illustrating a complex proinflammatory profile 
with both beneficial, dual, or harmful effects on the nervous system 
[18].

Fig. 5. Boxplot of selected metabolites from high-resolution metabolomics. The metabolites presented are a subset of metabolites correlated with the astrocytic 
transcriptomic profile based on xMWAS association analysis and with previously validated annotations and/or medium-high confidence annotations from 
xMSAnnotator. See the full list in Supplementary Table 2.

Fig. 6. Validated amino acid perturbations in astrocyte cell extracts (targeted 
analysis by HRMS). Pairwise comparisons using the Wilcoxon exact rank sum 
test, with Benjamini-Hochberg p-value adjustment procedure. *Adjusted p- 
value <0.05 for the comparison of Tg.Old versus Tg.Neo and Tg.Old versus 
Wt.Neo.
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4. Conclusions

To our knowledge, this is the first study to evaluate metabolic 
changes in astrocytes isolated from the 3xTg-AD mouse model. Our 
findings suggest important alterations in key energy and signaling cen
ters of the brain, such as glutamate intermediates, GABA and TCA. These 
findings reinforce the concept that neurotoxic astrocytes could have 
compromised neuronal support capacity and/or directly have a delete
rious effect through aberrant release of neurotransmitters. Furthermore, 
we observed an increase in proinflammatory mediators related to 
arachidonic acid metabolism. In a broader sense, our findings suggest 
that the previous alterations occur as part of a stress response triggered 
in the endoplasmic reticulum (Fig. 7). This response may not necessarily 
be harmful in its early stages, but constitutes a survival or damage 
control mechanism of astrocytes, since many of the annotated metabo
lites may have dual functions in the brain. Further investigations should 
be performed to confirm the existence of the suggested alterations, as 
well as the detection of additional alterations in vivo and their role in 
disease progression. Above all, our findings reinforce the value of as
trocytes as a therapeutic target for neurodegenerative diseases.
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cerebrospinal fluid levels of L-carnitine in non-apolipoprotein E4 carriers at early 
stages of Alzheimer’s disease, J. Alzheimers Dis. 41 (2014) 223–232, https://doi. 
org/10.3233/JAD-132063.

[83] R.C. Noland, T.R. Koves, S.E. Seiler, H. Lum, R.M. Lust, O. Ilkayeva, R.D. Stevens, 
F.G. Hegardt, D.M. Muoio, Carnitine insufficiency caused by aging and 
Overnutrition compromises mitochondrial performance and metabolic control *, 
J. Biol. Chem. 284 (2009) 22840–22852, https://doi.org/10.1074/JBC. 
M109.032888.

[84] S. Schaffer, H.W. Kim, Effects and mechanisms of taurine as a therapeutic agent, 
Biomol. Ther. (Seoul). 26 (2018) 225–241, https://doi.org/10.4062/ 
BIOMOLTHER.2017.251.

[85] L. Sun, Y.-W. Xu, J. Han, H. Liang, N. Wang, Y. Cheng, S. L, X. YW, H. J, L. H, W. N, 
C. Y, 12/15-Lipoxygenase metabolites of arachidonic acid activate PPARγ: a 
possible neuroprotective effect in ischemic brain 56, 2015, pp. 502–514, https:// 
doi.org/10.1194/JLR.M053058.

[86] Z.J. Wang, C.L. Liang, G.M. Li, C.Y. Yu, M. Yin, W. ZJ, L. CL, L. GM, Y. CY, Y. M, 
Neuroprotective effects of arachidonic acid against oxidative stress on rat 
hippocampal slices 163, 2006, pp. 207–217, https://doi.org/10.1016/J. 
CBI.2006.08.005.

[87] V. Sambra, F. Echeverria, A. Valenzuela, R. Chouinard-Watkins, R. Valenzuela, 
Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout 
the Life Cycle, Nutr 13 (2021) 986, https://doi.org/10.3390/NU13030986.

[88] Z. Amtul, M. Uhrig, L. Wang, R.F. Rozmahel, K. Beyreuther, Detrimental effects of 
arachidonic acid and its metabolites in cellular and mouse models of Alzheimer’s 
disease: structural insight, Neurobiol. Aging 33 (831) (2012), https://doi.org/ 
10.1016/J.NEUROBIOLAGING.2011.07.014 e21–831.e31.

[89] M.H. Thomas, J.L. Olivier, Arachidonic acid in Alzheimer’s disease, J. Neurol. 
Neuromedicine. 1 (2016) 1–6. www.jneurology.com (accessed August 2, 2021).

D. Carvalho et al.                                                                                                                                                                                                                               Journal of Proteomics 310 (2025) 105336 

11 

https://doi.org/10.15430/JCP.2014.19.2.75
https://doi.org/10.15430/JCP.2014.19.2.75
https://doi.org/10.1016/J.PNEUROBIO.2017.08.001
https://doi.org/10.1242/jeb.02208
https://doi.org/10.3390/biology6010017
https://doi.org/10.3390/biology6010017
https://doi.org/10.1034/J.1600-079X.2001.310411.X
https://doi.org/10.1523/JNEUROSCI.21-19-07455.2001
https://doi.org/10.1523/JNEUROSCI.21-19-07455.2001
https://doi.org/10.1007/S11910-001-0078-7
https://doi.org/10.1007/S11910-001-0078-7
https://doi.org/10.1016/J.FREERADBIOMED.2019.07.018
https://doi.org/10.3390/METABO10050208
https://doi.org/10.3390/METABO10050208
https://doi.org/10.1586/14737175.2015.1049999
https://doi.org/10.1155/2017/5472792
https://doi.org/10.1155/2017/5472792
https://doi.org/10.1007/978-0-387-79492-1_7
https://doi.org/10.1007/978-0-387-79492-1_7
https://doi.org/10.1177/0271678X18764775
https://doi.org/10.5607/EN.2018.27.3.155
https://doi.org/10.5607/EN.2018.27.3.155
https://doi.org/10.1038/nm.3639
https://doi.org/10.1038/nm.3639
https://doi.org/10.3390/MOLECULES26123724
https://doi.org/10.1016/J.NEUINT.2010.10.013
https://doi.org/10.1016/J.NEUINT.2010.10.013
https://doi.org/10.5607/EN21007
https://doi.org/10.1155/2018/4160247
https://doi.org/10.1155/2018/4160247
https://doi.org/10.1016/J.BRAINRES.2021.147291
https://doi.org/10.1016/J.BRAINRES.2021.147291
https://doi.org/10.1002/IUB.280
https://doi.org/10.1002/IUB.280
https://doi.org/10.4062/biomolther.2017.179
https://doi.org/10.4062/biomolther.2017.179
https://doi.org/10.1038/sj.jcbfm.9600343
https://doi.org/10.1038/sj.jcbfm.9600343
https://doi.org/10.1002/DDR.20359
https://doi.org/10.1002/DDR.20359
https://doi.org/10.1258/ACB.2011.010243
https://doi.org/10.1258/ACB.2011.010243
https://doi.org/10.1111/BPA.12299
https://doi.org/10.1016/J.EBIOM.2021.103627
https://doi.org/10.7554/ELIFE.25946
https://doi.org/10.7554/ELIFE.25946
https://doi.org/10.1093/GERONA/GLX101
https://doi.org/10.1093/GERONA/GLX101
https://doi.org/10.1038/srep00134
https://doi.org/10.1111/ACEL.12215
https://doi.org/10.1111/ACEL.12215
https://doi.org/10.1016/J.MAD.2012.01.007
https://doi.org/10.1016/J.MAD.2012.01.007
https://doi.org/10.1101/2020.02.23.949537
https://doi.org/10.1101/2020.02.23.949537
https://doi.org/10.3233/JAD-132063
https://doi.org/10.3233/JAD-132063
https://doi.org/10.1074/JBC.M109.032888
https://doi.org/10.1074/JBC.M109.032888
https://doi.org/10.4062/BIOMOLTHER.2017.251
https://doi.org/10.4062/BIOMOLTHER.2017.251
https://doi.org/10.1194/JLR.M053058
https://doi.org/10.1194/JLR.M053058
https://doi.org/10.1016/J.CBI.2006.08.005
https://doi.org/10.1016/J.CBI.2006.08.005
https://doi.org/10.3390/NU13030986
https://doi.org/10.1016/J.NEUROBIOLAGING.2011.07.014
https://doi.org/10.1016/J.NEUROBIOLAGING.2011.07.014
http://www.jneurology.com

	Untargeted metabolomics of 3xTg-AD neurotoxic astrocytes
	1 Introduction
	2 Methods
	2.1 Animals
	2.2 Astrocyte cultures from adult and neonatal mice
	2.3 Sample collection and preprocessing
	2.4 High-resolution mass spectrometry-based metabolomics
	2.5 Metabolomics data processing and statistical analysis
	2.6 Metabolite feature annotation and pathway enrichment analysis
	2.7 Evaluation of metabolome-transcriptome association with xMWAS
	2.8 Targeted metabolite detection

	3 Results and discussion
	3.1 Untargeted metabolomics distinguishes symptomatic astrocytes derived from 3xTg-AD mice from those obtained from presymp ...
	3.2 Associations between altered metabolic and signaling pathways
	3.3 Key metabolite alterations involved in astrocyte energetics and signaling

	4 Conclusions
	Funding
	Ethical approval
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	datalink5
	References


